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Comparative study of character evolution in the
shorebirds is presently limited because the phylo-
genetic placement of some enigmatic genera
remains unclear. We therefore used Bayesian
methods to obtain a well-supported phylogeny of
90 recognized genera using 5 kb of mitochondrial
and nuclear sequences. The tree comprised three
major clades: Lari (gulls, auks and allies plus
buttonquails) as sister to Scolopaci (sandpipers,
jacanas and allies), and in turn sister to Charadrii
(plovers, oystercatchers and allies), as in previous
molecular studies. Plovers and noddies were not
recovered as monophyletic assemblages, and the
Egyptian plover Pluvianus is apparently not a
plover. Molecular dating using multiple fossil
constraints suggests that the three suborders
originated in the late Cretaceous between 79 and
102 Mya, and at least 14 lineages of modern shore-
birds survived the mass extinction at the K/T
boundary. Previous difficulties in determining the
phylogenetic relationships of enigmatic taxa
reflect the fact that they are well-differentiated
relicts of old, genus-poor lineages. We refrain
from suggesting systematic revisions for shore-
birds at this time because gene trees may fail to
recover the species tree when long branches are
connected to deep, shorter branches, as is the
case for some of the enigmatic taxa.
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1. INTRODUCTION
The great diversity observed in morphology, behaviour,

breeding systems and other ecological characters in

shorebirds (Charadriiformes) provides tests of

evolutionary hypotheses of life-history traits (e.g. Myers

1981; Whitfield & Tomkovich 1996; Barbosa &

Moreno 1999). A well-supported phylogeny is a
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prerequisite for comparative studies because it can be
used to understand how and when adaptive changes
took place. For instance, by mapping morphological
characters onto a well-supported phylogeny of the
shanks derived from nuclear and mitochondrial DNA
gene sequences, Pereira & Baker (2005) identified
many characters that have retained ancestral states or
have evolved in parallel. Although the phylogenetic
relationships within shorebirds are well established at
the family level based on nuclear and/or mitochondrial
sequences (Ericson et al. 2003; Paton et al. 2003;
Paton & Baker 2006), they are uncertain or unknown
for many groups of species and genera, including
enigmatic taxa such as the ibisbill (Ibidorhyncha
struthersii ), thick-knees (Burhinidae) and sheathbills
(Chionidae). Hence, most of the evolution of life-
history traits among shorebirds has yet to be mapped
onto a well-structured phylogenetic framework.

To overcome this problem, Thomas et al. (2004)
used the matrix representation with parsimony method
(also known as supertree method) to propose the most
inclusive phylogenetic hypothesis for extant shorebirds
to date. However, their framework may seriously
compromise interpretations of evolutionary histories of
shorebirds because the supertree method lacks
measures of nodal support and is known to be highly
prone to biases depending on which source trees are
included in the analysis, and by treating well-supported
and poorly supported source trees as equally likely.
Additionally, the supertree presented in Thomas et al.
(2004) falls short in providing good resolution for many
congeneric species because not enough source trees or
none at all exist for these groups.

DNA sequencing is the logical approach to gather
enough data and establish well-resolved phylogenetic
hypotheses that better represent the evolutionary
history of the Tree of Life. Here, we provide a
comprehensive phylogeny and divergence times for
shorebird genera based on DNA sequences of four
genes. Our study provides a scaffold for future studies
aimed at resolving phylogenetic relationships among
species of shorebirds as well as a temporal framework
for the evolution of life-history traits among shorebirds.
2. MATERIAL AND METHODS
We sampled 90 out of 96 putative genera of Charadriiformes
including two species of the enigmatic Turnix for DNA amplification
and sequencing of the small ribosomal subunit (12S rDNA), NADH
dehydrogenase subunit 2 (ND2), cytochrome b (cyt b) and recombi-
nation-activating protein (RAG-1) gene (species, primers and PCR
conditions given in the electronic supplementary material). Gene
fragments were concatenated in an alignment of 5198 bp, including
gaps. All sequences obtained in this study were deposited in GenBank
(table 1 in electronic supplementary material).

Tree inference was performed by a Metropolis-coupled Markov
chain Monte Carlo Bayesian approach by running two simultaneous
independent runs, each with one cold and five heated chains as
implemented in MRBAYES v. 3.1.2 (Ronquist & Huelsenbeck 2003).
Divergence times were estimated using a Bayesian approach that
accounts for uncertainties in branch lengths for individual gene
partitions, rates of evolution and time constraints ( Thorne &
Kishino 2002). For details, see the electronic supplementary
material (figures 1 and 2).
3. RESULTS AND DISCUSSION
(a) Phylogenetic relationships

The Bayesian tree recovered the three major clades as
in recent analyses of both nuclear and mtDNA
sequences (Ericson et al. 2003; Paton et al. 2003;
This journal is q 2007 The Royal Society
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Figure 1. Bayesian tree for Charadriiformes genera. Letters A to P indicate nodes for which fossil or molecular time
constraints were used to estimate divergence times (see table 2 in electronic supplementary material). Numbers at nodes are
posterior probabilities (PP), which are not indicated if PPZ1.0. Nodes with PP!0.5 are collapsed.
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Paton & Baker 2006) with the Lari sister to the
Scolopaci, which are in turn sister to the Charadrii.
The gulls (Larus and allies) plus skimmers (Rhynchops)
are sister to the terns (Sterna and allies), but noddies
(Gygis and Anous) are successive sister groups to this
clade instead as basal members of the tern clade (contra
Bridge et al. 2005). The alcids (Alca and Fratercula)
plus skuas (Catharacta and Stercorarius) comprise the
sister group to the terns, gulls and noddies, and the
coursers (Cursorius and Rhinoptilus) and pratincoles
(Glareola and Stiltia) are sister to all these clades.
Buttonquails (Turnix) are the sister to the rest of the
Lari. Phylogenetic relationships among alcid genera are
congruent with those in the cyt b plus allozyme tree of
Biol. Lett. (2007)
Friesen et al. (1996), with the Dovekie (Alle) and auks
(Alca, Penguinus, Uria) sister to the synthliboramphine
murrelets (Synthliboramphus), and a pectinate sequence
of sister groups being formed successively by
the guillemots (Cepphus), brachyramphine auklets
(Brachyramphus) and a clade containing the true auklets
(Ptychoramphus, Cyclorrhynchus, Aethia) plus the puffins
(Fratercula, Cerorhinca).

The Scolopaci comprises two major clades of genera,
one containing the Scolopacidae (sandpipers, snipes
and allies) and the other containing the Jacanidae and
Rostratulidae ( Jacana and allies and painted snipes
Nyctocryphes and Rostratula, respectively) as a sister
group to the Pedionomidae plus the Thinocoridae
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Figure 2. Bayesian chronogram for Charadriiformes genera. The Cretaceous/Paleocene boundary is marked by a grey bar.
Nodes are labelled A, C, L and S for Avian outgroups, Charadrii, Lari and Scolopaci divergences, respectively.
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(Plains Wanderer Pedionomus and seedsnipes

Thinocorus, respectively). Within the Scolopacidae, the

calidridine sandpipers (Calidris and allies) plus the

turnstones (Arenaria) are sister to the shanks (Tringa
and allies) and phalaropes (Phalaropus). Clades formed

by the snipes and woodcock (Gallinago, Coencorypha,

Scolopax) and dowitchers (Limnodromus) plus jacksnipe

(Lymnocryptes), then the godwits (Limosa), and finally

the curlews (Numenius) plus Upland sandpiper

(Bartramia) branch off in a pectinate sequence identical

to that in the nuclear RAG-1 tree of Paton et al. (2003).

Within the jacanas, we found the same phylogenetic

relationships among geographically disjunct sister pairs

of genera reported by Whittingham et al. (2000). The

predominantly Australian Irediparra is sister to the

African Microparra and the Asian Hydrophasianus is

sister to New World Jacana, consistent with their

hypothesis of extinction of intervening forms to explain

this biogeographic pattern.

In the Charadrii, the typical plovers (Charadrius and

allies) are in one clade with the notable exception that

Pluvialis groups with the oystercatchers (Haematopus)
and ibisbill (Ibidorhyncha), stilts (Himantopus,
Cladorhynchus) and avocets (Recurvirostra), thereby
Biol. Lett. (2007)
rendering typical plovers paraphyletic. The lapwings

(Vanellus) are sister to three Australasian genera of

plovers (Anarhynchus, Peltohyas, Erythrogonys).
Additionally, the enigmatic Egyptian plover (Pluvianus)
is sister to these clades. Thick-knees (Burhinus, Esacus)
form a clade with sheathbills (Chionis) and the Magella-

nic Plover (Pluvianellus) which are the basal sister group

to the rest of the Charadrii, as in previous DNA trees

(Ericson et al. 2003; Paton et al. 2003; Paton & Baker

2006). Finally, the phylogenetic placement of the

sandgrouse (Pterocles) remains unresolved, but they do

not appear to be shorebirds.

While it is tempting to suggest systematic revisions of

the Charadriiformes based on our results, caution is

warranted because anomalous gene trees that differ

from the species tree can be common when sequence

data are concatenated (Degnan & Rosenberg 2006).

This is especially likely to be a problem when recent

branches are long and deeper branches in the species

tree are short, as occurs in parts of our tree including

the branch to Pluvialis. We therefore advocate prudence

until clade markers such as CR1 retroposons can be

found to check controversial phylogenetic placements

of genera.
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(b) Divergence times

Based on relaxed clock molecular dating, the most
recent common ancestor (MRCA) of the shorebirds
was estimated to have occurred 93 Mya (95% CI
84–102 Mya; table 3 in electronic supplementary
material), which is considerably older than the
80 Mya estimate obtained by Paton et al. (2003).
This is because the latter authors fixed the root age of
the Charadriiformes at 78 Mya based on a previous
molecular age estimated from whole mitochondrial
DNA genomes (Paton et al. 2002). However, this
calibration point is much younger than that estimated
with a much more comprehensive sampling of
vertebrates which had multiple fossil constraints and
accounted properly for phylogenetic and fossil age
uncertainties (Pereira & Baker 2006).

Moreover, we added 14 other fossil constraints
within the Charadriiformes owing to our much larger
taxon sampling than in previous studies. With these
constraints, the three suborders were estimated to have
originated in the late Cretaceous between 79 and
102 Mya (table 3 in electronic supplementary material).
Fourteen ancestors of extant lineages apparently pre-
date the K/T boundary 65 Mya, as follows: terns plus
gulls plus noddies; alcids plus skuas; coursers; pratin-
coles; buttonquails; sandpipers and allies plus curlews;
jacanas plus painted snipes; seedsnipes plus plains
wanderer; traditional plovers; oystercatchers and allies
including ibisbill; Pluvialis; Egyptian plover; sheathbills
and Magellanic plover; and thick-knees.

The survival of so many lineages across the K/T
boundary suggests that many more shorebird lineages
diversified well before the K/T boundary than
assumed by the long fuse model for the evolution of
shorebirds (Feduccia 2003). However, diversification
of genera within the three suborders predominantly
post-dates the K/T boundary. As in many ordinal
clades of birds (Pereira et al. 2002; Baker et al. 2006;
Tavares et al. 2006), these radiations coincide with
the warming in the Eocene when ecosystems were
highly productive (Jaramillo et al. 2006). We conclude
that shorebirds originated earlier than was estimated
previously, and they apparently were not affected
by the bolide impact 65 Mya. Finally, the survival
of ancient lineages of shorebirds since the late
Cretaceous (Cooper & Penny 1997) suggests a possible
reason why a number of oddball taxa were so difficult to
place phylogenetically, as they are the ancient relicts of
a much earlier radiation.
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